Pandas loc/iloc用法详解
在数据分析过程中,很多时候需要从数据表中提取出相应的数据,而这么做的前提是需要先“索引”出这一部分数据。虽然通过 Python 提供的索引操作符
本节就来讲解一下,如何在 Pandas 中使用 loc 函数和 iloc 函数。两种函数说明如下:
.loc[] 具有多种访问方法,如下所示:
loc[] 接受两个参数,并以
.iloc[] 提供了以下方式来选择数据:
示例如下:
"[]"
和属性操作符"."
可以访问 Series 或者 DataFrame 中的数据,但这种方式只适应与少量的数据,为了解决这一问题,Pandas 提供了两种类型的索引方式来实现数据的访问。本节就来讲解一下,如何在 Pandas 中使用 loc 函数和 iloc 函数。两种函数说明如下:
方法名称 | 说明 |
---|---|
.loc[] | 基于标签索引选取数据 |
.iloc[] | 基于整数索引选取数据 |
.loc[]
df.loc[] 只能使用标签索引,不能使用整数索引。当通过标签索引的切片方式来筛选数据时,它的取值前闭后闭,也就是只包括边界值标签(开始和结束)。.loc[] 具有多种访问方法,如下所示:
- 一个标量标签
- 标签列表
- 切片对象
- 布尔数组
loc[] 接受两个参数,并以
','
分隔。第一个位置表示行,第二个位置表示列。示例如下:
import numpy as np import pandas as pd #创建一组数据 data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'], 'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25], 'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1], 'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']} label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] df = pd.DataFrame(data, index=label) print(df) #对行操作 print(df.loc['a':'d',:]) #等同于df.loc['a':'d']输出结果:
name age gender isMarried a John 20.0 0 yes b Mike 32.0 0 yes c Mozla 29.0 1 no d Rose NaN 1 yes e David 15.0 0 no f Marry 28.0 1 no g Wansi 21.0 0 no h Sidy 30.0 0 yes i Jack 37.0 1 no j Alic 25.0 1 no #从a到d,切记包含d name age gender isMarried a John 20.0 0 yes b Mike 32.0 0 yes c Mozla 29.0 1 no d Rose NaN 1 yes对列进行操作,示例如下:
import numpy as np import pandas as pd #创建一组数据 data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'], 'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25], 'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1], 'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']} label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] df = pd.DataFrame(data, index=label) print(df.loc[:,'name'])输出结果:
a John b Mike c Mozla d Rose e David f Marry g Wansi h Sidy i Jack j Alic Name: name, dtype: object对行和列同时操作,示例如下:
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) print(df.loc[['a','b','f','h'],['A','C']])输出如下:
A C a 1.168658 0.008070 b -0.076196 0.455495 f 1.224038 1.234725 h 0.050292 -0.031327布尔值操作,示例如下:
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(4, 4),index = ['a','b','c','d'], columns = ['A', 'B', 'C', 'D']) #返回一组布尔值 print(df.loc['b']>0)输出结果:
A True B True C False D True Name: b, dtype: bool
.iloc[]
df.iloc[] 只能使用整数索引,不能使用标签索引,通过整数索引切片选择数据时,前闭后开(不包含边界结束值)。同 Python 和 NumPy 一样,它们的索引都是从 0 开始。.iloc[] 提供了以下方式来选择数据:
- 1) 整数索引
- 2) 整数列表
- 3) 数值范围
示例如下:
data = {'name': ['John', 'Mike', 'Mozla', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jack', 'Alic'], 'age': [20, 32, 29, np.nan, 15, 28, 21, 30, 37, 25], 'gender': [0, 0, 1, 1, 0, 1, 0, 0, 1, 1], 'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']} label = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] df = pd.DataFrame(data, index=label) print(df) print(df.iloc[2:,])输出结果:
name age gender isMarried a John 20.0 0 yes b Mike 32.0 0 yes c Mozla 29.0 1 no d Rose NaN 1 yes e David 15.0 0 no f Marry 28.0 1 no g Wansi 21.0 0 no h Sidy 30.0 0 yes i Jack 37.0 1 no j Alic 25.0 1 no name Mozla age 29 gender 1 isMarried no Name: c, dtype: object再看一组示例:
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df.iloc[[1, 3, 5], [1, 3]] print df.iloc[1:3, :] print df.iloc[:,1:3]输出结果:
B D 1 0.773595 -0.206061 3 -1.740403 -0.464383 5 1.046009 0.606808 A B C D 1 -0.093711 0.773595 0.966408 -0.206061 2 -1.122587 -0.135011 0.546475 -0.551403 B C 0 0.623488 3.328406 1 0.773595 0.966408 2 -0.135011 0.546475 3 -1.740403 -0.869073 4 0.591573 -1.463275 5 1.046009 2.330035 6 -0.266607 0.873971 7 -1.059625 -0.405340