首页 > 编程笔记

找数组的最大值和最小值

程序中,我们经常使用数组(列表)存储给定的线性序列(例如 {1,2,3,4}),那么如何查找数组(序列)中的最大值或者最小值呢?

查找数组(序列)中最大值或最小值的算法有很多,接下来我们以 {3,7,2,1} 序列为例讲解两种查找最值的算法,一种是普通算法,另一种是借助分治算法解决。

普通算法

普通算法的解决思路是:创建两个变量 max 和 min 分别记录数组中的最大值和最小值,它们的初始值都是数组中的第一个数字。从第 2 个数字开始遍历数组,每遇到一个比 max 大的数字,就将它存储到 max 变量中;每遇到一个比 min 小的数字,就将它存储到 min 变量中。直到遍历完整个数组,max 记录的就是数组中的最大值,min 记录的就是数组中的最小值。

下面的动画,演示了找最大值的过程:


图 1 数组中找最大值的过程

找最小值的过程和图 1 类似,这里不再给出具体的动画演示。

如下是普通算法对应的伪代码:
输入 num[1...n]              // 输入 n 个数字
max <- num[1]                // 将第 1 个数字赋值给 max(表示最大值)
min <- num[1]                // 将第 1 个数字赋值给 min(表示最小值)
for i <- 2 to n:             // 从第 2 个数字开始遍历
    if num[i] > max:         // 如果 max 小于遍历到的数字,则更新 max 的值
        max <- num[i]
    if num[i] < min:         // 如果 min 小于遍历到的数字,则更新 min 的值
        min <- num[i]
Print max , min              // 输出 max 和 min 的值

实现过程非常简单,感兴趣的读者可以自行编写对应的 C、Java 或者 Python 代码。

分治算法

下图展示了用分治算法查找 {3, 7, 2, 1} 中最大值的实现过程:


图 2 分治算法找最大值

分治算法的实现思路是:不断地等分数组中的元素,直至各个分组中元素的个数 ≤2。由于每个分组内的元素最多有 2 个,很容易就可以找出其中的最值(最大值或最小值),然后这些最值再进行两两比较,最终找到的最值就是整个数组中的最值。

如图 2 所示,借助“分而治之”的思想,我们将“找 {3, 7, 2, 1} 中最值”的问题转换成了:先找出 {3 , 7]、[2 , 1} 中各自的最值,找出的最值再进行两两比较,最终就可以找到整个数组中的最值。

如下是分治算法求数组中最大值的伪代码:
输入 arr[1...n]           // 输入 n 个数字
arr_max(x , y) :          // 设计一个递归函数,[x , y] 用来限定查找最大数的范围
    if y-x ≤ 1 :         // 如果 y-x 的值小于等于 1,则比较 arr[x] 和 arr[y] 的值,大的就是最大值 
        return max(arr[x] , arr[y])
    else :
        // 将 [x , y] 区域划分为 [x , ⌊(x+y)/2⌋ ] 和 [ ⌊(x+y)/2+1⌋ , y] 两个区域,求出两个区域内各自的最大值
        max1 = arr_max(x , ⌊(x+y)/2⌋ )    
        max2 = arr_max( ⌊(x+y)/2+1⌋ , y)
    return max(max1 , max2)   // 比较两个区域的最大值,最终找出 [x , y] 中的最大值

分治算法实现“求数组中最大值”的 C 语言程序如下:
#include <stdio.h>
//自定义函数,其中 [left,right] 表示 arr 数组中查找最大值的范围
int get_max(int* arr, int left, int right) {
    int max_left = 0, max_right = 0, middle = 0;
    //如果数组不存在
    if (arr == NULL) {
        return  -1;
    }
    //如果查找范围中仅有一个数字
    if (right - left == 0) {
        return arr[left];
    }
    //如果查找范围中有 2 个数字,直接比较即可
    if (right - left <= 1) {
        if (arr[left] >= arr[right]) {
            return arr[left];
        }
        return  arr[right];
    }
    //等量划分成 2 个区域
    middle = (right - left) / 2 + left;
    //得到左侧区域中的最大值
    max_left = get_max(arr, left, middle);
    //得到右侧区域中的最大值
    max_right = get_max(arr, middle + 1, right);
    //比较左、右两侧的最大值,找到 [left,right] 整个区域的最大值
    if (max_left >= max_right) {
        return  max_left;
    }
    else {
        return max_right;
    }
}
int main() {
    int arr[4] = { 3,7,2,1 };
    int max = get_max(arr, 0, 3);
    printf("最大值:%d", max);
    return 0;
}

分治算法实现“求数组中最大值”的 Java 程序如下:
public class Demo {
    public static int get_max(int [] arr,int left,int right) {
        //如果数组不存在或者数组内没有元素
        if (arr == null || arr.length == 0) {
            return -1;
        }
        //如果查找范围中仅有 2 个数字,则直接比较即可
        if(right - left <=1) {
            if(arr[left] >= arr[right]) {
                return arr[left];
            }
            return arr[right];
        }
        //等量划分成 2 个区域
        int middle = (right-left)/2 + left;
        int max_left = get_max(arr,left,middle);
        int max_right = get_max(arr,middle+1,right);
        if(max_left >= max_right) {
            return max_left;
        }else {
            return max_right;
        }
    }
    public static void main(String[] args) {
        int [] arr = new int[] { 3,7,2,1 };
        int max = get_max(arr,0,3);
        System.out.println("最大值:"+max);
    }
}

分治算法实现“求数组中最大值”的 Python 程序如下:
def get_max(arr,left,right):
    #列表中没有数据
    if len(arr) == 0:
        return -1
    #如果查找范围中仅有 2 个数字,则直接比较即可
    if right - left <= 1:
        if arr[left] >= arr[right]:
            return arr[left]
        return arr[right]
    #等量划分成 2 个区域
    middle = int((right-left)/2 + left)
    max_left = get_max(arr,left,middle)
    max_right = get_max(arr,middle+1,right)
    if max_left >= max_right:
        return max_left
    else:
        return max_right
arr = [3,7,2,1]
max = get_max(arr,0,3)
print("最大值:",max,sep='')

以上程序的输出结果均为:

最大值:7

您可以根据伪代码和给出的找数组中最大值的程序,自行编写出找数组中最小值的程序,这里不再过多赘述。

推荐阅读